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Abstract. We show that a microscopic generalization of the Stokes–Einstein relation between
the diffusion and shear viscosity coefficients, previously tested in simple liquids near melting,
has a much wider range of application. The practical validity of the approach is accurately
checked by performing extensive computer simulations in liquid sodium at temperatures ranging
from 403 K to 1003 K.

Transport properties such as the diffusion and shear viscosity coefficients are widely used in
any macroscopic description of time-dependent phenomena in dense fluids and liquids such
as, for example, ordinary Navier–Stokes hydrodynamics. These ‘coarse-grained’ approaches
are, however, unable to predict in different thermodynamic states the actual magnitude of
the transport coefficients, which depends on a variety of underlying microscopic events
(comprising, e.g., collisions, vortices and particle trapping). In the last decade or so,
considerable progress in the microdynamics of the liquid state has however been achieved by
the development of comprehensive frameworks combining both kinetic and mode-coupling
arguments [1, 2]. In particular, by these approaches quite satisfactory results have been
obtained for the dynamics (and consequently for the transport coefficients) of several simple
liquids near freezing as well as in supercooled states [1]. In comparison, less attention has
instead been devoted to realistic liquids at relatively high temperatures, where the tests of
the above general framework are limited, and the results still somewhat controversial.

In this work we shall explicitly consider the problem of ‘predicting’ the diffusion
coefficientD of a simple liquid in a wide range of thermodynamic states. Specifically,
we shall consider the case of molten sodium, an appropriate benchmark system because of
the stability of its liquid phase over a rather large temperature interval (from the melting
point atTm ∼ 371 K up to the boiling point atTb ∼ 1154 K). Although our approach is
less general, it is much simpler (and equally reliable) than those referred to in the above,
as will be clear in the following. We shall also compare the theoretical results forD with
the experimental findings [3, 4]. In order to test the validity of the predictions as accurately
as possible, we have also performed a number of subsidiary molecular dynamics (MD)
simulations in a model system which mimics in a rather realistic way the features of liquid
Na for the properties under consideration. The effective pair potentials acting between
the Na atoms are based on pseudopotential theory: we have used the Ashcroft empty-core
pseudopotential [5] along with the Ichimaru–Utsumi expression for the local field correction
[6]. The only parameter in the pseudopotential is the core radius, for which we have taken
the usual value reported in the literature (0.9049Å) [7]. For state I (cf. table 1) we have
used instead the effective interatomic potential proposed by Priceet al [8] which gives
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Table 1. First section: input data for the MD simulation—the temperatureT , mass densityρ and
time-step1t for the integration of equations of motion; second section: results for the diffusion
constantD (in Å2 ps−1) obtained by using equations (4) and (7); third section: results forD as
obtained directly from the MD simulation (cf. text); fourth section: experimental results [3, 4].

State I II III IV V

T (K) 403.0 602.0 803.0 900.0 1003.0
ρ (kg m−3) 919.2 873.5 824.4 801.0 777.0
1t (fs) 3 1 1 1 1

D0 (MD) 0.364 1.501 2.478 2.909 3.351
(MF fit) 0.507 1.501 2.340 2.868 3.257

D∞free 0.075 −0.068 −0.080 −0.085 0.209

D0 +D∞free (MD) 0.439 1.433 2.399 2.824 3.560
(MF fit) 0.582 1.433 2.260 2.783 3.466

DMD 0.615 1.52 2.67 3.23 4.0
± 0.015 ± 0.02 ± 0.05 ± 0.03 ± 0.01

Dexp 0.505 1.280 2.20 2.98 3.35

slightly different (or even better) results for the diffusion constant [9, 3]. In this case the
core radius was assumed to be 0.9116Å.

Overall we have investigated five states of liquid Na; they are characterized by
temperaturesT and mass densitiesρ which are compiled in table 1 and were taken from [4].
In our approach we require the transverse-current correlation functions (CF)CT(q, t) which
were obtained by standard micro-canonical MD simulations of 2048-particle ensembles over
100 000 time-steps1t . The values for1t for the different states are also reported in table
1. Numerical and technical details about the simulation are compiled in previous papers
[10, 11]. The transverse-current CFs were evaluated over a time-range of 20481t . For
every Na state a set of 63q-vectors compatible with the periodic boundary conditions and
up to a valueqm ranging from 8.2 to 9Å−1 was chosen (the position of the main peak
of the structure factor being at about 2̊A−1). The simulation results forCT(q, t) have
been fitted by a hydrodynamic model (with aq-dependent shear viscosityη(q)) and by a
‘viscoelastic’ memory function model, by introducing a relaxation timeτ(q) [1, 10]. From
the MD data, the diffusion coefficientD can be deduced both from an integral over the
velocity autocorrelation function (VACF) and from the long-time behaviour of the mean
square displacement [1, 12].

The starting point of our analysis is a microscopic generalization of the well-known
‘Stokes–Einstein’ (S–E) relation connectingD with the ordinary shear viscosity coefficient
η. Such a generalization is a by-product of an approach developed by Gaskell and co-
workers [13] for the VACF〈v(0) · v(t)〉 of a tagged particle in a dense monatomic fluid.
The central point of this theory is the introduction of amicroscopic velocity fieldaround
the tagged particle; from the VACF, the diffusion coefficient can eventually be obtained
by a straightforward time integration. A simplified version of the theoretical result forD

reads [14]

D = 1

3

∫ ∞
0

dt 〈v(0) · v(t)〉 ' 1

3π2

∫ ∞
0

dq q2f (q)

∫ ∞
0

dt CT(q, t). (1)

Here f (q) is the Fourier transform off (r), the ‘form factor’ of the microscopic
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velocity field. As shown in [13],f (r) can in practice be approximated by a step function
2(a−r), where the lengtha represents an effective particle radius determined by the relation
4
3πna

3 = 1 (n being the number density). Adopting this scheme, it is readily seen that
f (q) = (3/n)j1(qa)/qa, wherej1(x) = (1/x)[sin(x)/x − cos(x)] is the spherical Bessel
function of order one. Initially,CT(q, t = 0) = (βm)−1, wherem is the atomic mass and
β = (kBT )

−1 with T the temperature of the fluid.
Strictly speaking, the velocity field approach cannot be considered as being a self-

contained theory, since there is no recipe for a separate determination of all the dynamical
quantities which enter the full VACF expression. However, with the resorting to simple
theoretical approximations for the current correlations (for example, those provided by
simple viscoelastic models [1]), the final results for the VACF compare very favourably
with the simulation data in a variety of model systems, ranging from dense hard-sphere
fluids to both Lennard-Jones and molten alkali metalsnear the melting point[13, 14]. Our
purpose is to focus attention on the diffusion coefficient, and to test the validity of equation
(1) a much wider temperature range.

As already remarked, equation (1) represents a generalization of the usual S–E relation
(originally derived for a ‘Brownian particle’ in a solvent of much smaller particles). Inserting
in equation (1) the hydrodynamic approximationCT(q, t) ' (βm)−1 exp[(−η/nm)q2t ], we
would in fact obtain

D ' n

3π2ηβ

∫ ∞
0

dq f (q) = 1

π2aηβ

∫ ∞
0

dx j1(x)
1

x
= 1

4πaηβ
≡ DH. (2)

The result (2) is identical with the one deducible from the S–E relation as written for a
particle of radiusa immersed in a continuum (and in the case of ‘slip’ boundary conditions).
Thus, apparently the S–E relation is valid to some extent even if we deal with a fluid made
of equal-mass particles. However, the roughness of the approximation (2) becomes clear if
we consider that the insertion of the hydrodynamic expression forCT(q, t) would be correct
if the q-integral in (1) were dominated by the small wavevectors. But, if this were the case,
we should also consistently replacef (q) by its ‘hydrodynamic’ valuef (q = 0) = 1/n. As
a result, theq-integral would diverge, signalling the relevance of wavevectors outside the
hydrodynamic regime. Indeed, it is generally found thatDH substantially underestimates
the actual value of the diffusion coefficient [15].

The origin of these discrepancies is clearly the incorrect insertion of the hydrodynamic
expression forCT(q, t) in equation (1). To proceed, we shall make use of a formal
representation of the Laplace transform̂CT(q, z) of CT(q, t):

ĈT(q, z)/CT(q, t = 0) = [z + K̂T(q, z)]
−1 (3)

which involves the Laplace transform of the (first-order) memory functionKT(q, t).
Adopting this ‘Mori representation’, it is readily seen that equation (1) can now be written
as

D ' 1

3π2βm

∫ ∞
0

dq q2f (q)[K̂T(q, z = 0)]−1 = n

3π2β

∫ ∞
0

dq f (q)
1

η(q)
(4)

where in the last step we have introduced awavevector-dependentshear viscosity coefficient
η(q) defined byK̂T(q, z = 0) = (q2/nm)η(q). The introduction of generalized transport
coefficients is typical of the so-called ‘generalized’ hydrodynamical frameworks. Forq → 0
(the realm of ordinary hydrodynamics) the quasi-conserved character of the transverse
current justifies a rapidly decaying (‘Markovian’) model forKT(q, t) [∼ 2(q2/nm)ηδ(t)];
correspondingly, in equation (3),̂KT(q, z) ' K̂T(q, z = 0) → (q2/nm)η, so η(q) → η.
As is well known, there are many indications that ordinary hydrodynamics breaks down
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at finite wavevectors: in the present context, there have been in fact several items of MD
evidence [16, 17, 18] thatη(q) is a rapidly decreasing function, which for largeq eventually
approaches the free-particle result

η(q) =
√

2

βπm

nm

q
. (5)

On a tentative basis, one may accept for the generalized viscosity the simple empirical
form η(q) ∼ η[1 + A2q2]−1 proposed by Alley and Alder [16] for dense fluids of hard
spheres of diameterd at not too high wavevectors. Inserting this expression into equation
(4) we obtain

D ' DH
1

π2a2

∫ ∞
0

dq f (q)[1+ A2q2] = DH[1+ 2(A/a)2f (r = 0)] = DH[1+ 2(A/a)2]

(6)

which shows that the actual diffusion coefficient should indeed exceedDH. From the
estimateA ' 0.3d [16] and some reasonable assumptions, one can also obtain a remarkably
good (even if somewhat fortuitous) agreement forD [19].

For a less empirical theory, it is clear that at finiteq one should ideally work out
a model forKT(q, t) that is more realistic than the Markovian one. For example, the
above-mentioned ‘viscoelastic model’ assumes forKT(q, t) a simple exponential decay,
with a time constantτ(q) which governs the transition of the response from solid-like (the
‘elastic’ q-dependent rigidity modulusG(q) = KT(q, t = 0)) to fluid-like (the generalized
viscosity η(q) = G(q)τ(q) = (nm/q2)K̂T(q, z = 0)). Unfortunately, there is no serious
theoretical approach for assessing the timeτ(q), and consequently the quantityη(q) to be
inserted in equation (4).

In view of this situation, we have preferred to check the validity of the result (4) by
a direct MD evaluation ofη(q). Although formally less appealing, the recourse to MD
data has the merit of providing a stringent test of equation (4), free of the approximations
inherent to any theoretical model forKT(q, t). On a practical basis, at large wavevectors
the finiteness of the integration step limits the accuracy of the MD data forCT(q, t), which
decreases more and more rapidly asq increases. Consequently, it is convenient to limit the
MD investigation to aq-range below a suitable valueqm. Equation (1) is accordingly split
into two contributions

D = D0+D∞free (7)

where the two quantities on the r.h.s. refer to integration ranges [0, qm] and [qm,∞],

respectively (in the present studyqm ∼ 8.2–9.0 Å
−1

). The contributionD0 can be evaluated
from equation (1) by directly using the MD data forCT(q, t). On the other hand, we may
chooseqm large enough thatη(q) is practically given by the expression (5). In such a case
from equation (4) one deduces that

D∞free=
1

(2π3)(1/2)na

√
1

βm

∫ ∞
qm

dq j1(qa) = 1

(2π3)1/2na2

√
1

βm
j0(qma) (8)

wherej0(x) = sin(x)/x.
The overall results of this procedure are reported in table 1.D0 has been evaluated in two

ways: (i) directly by inserting the MD data forCT(q, t) in equation (1) and evaluating these
integrals; (ii) via equation (4) using a value forη(q) which is obtained from a viscoelastic fit
to the MD data (i.e.,η(q) = G(q)τ(q), whereG(q) is calculated from the static properties
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[12] andτ(q)—mentioned above—is determined from a fitting procedure). The comparison
with the values ofD obtained directly from the simulation appears to be quite good for
both the procedures adopted. Furthermore, the agreement of the theoretical results with
experimental data [3, 4] is also satisfactory. Having in mind the different nature of the
relevant mechanisms ruling the diffusive process [20, 21], it is remarkable that the simple
velocity field approach is able to describe rather well the overall features of single-particle
motion in a range of conditions whereD changes considerably (by more than a factor of 6).
Viewed in perspective, this success is likely to be due to an important ingredient correctly
incorporated in the approach, namely the exploitation of a separation of time-scales between
the current and the positional coordinates. Owing to the close-packed character of the fluid
(see table 1), this separation is approximately valid even at relatively high temperatures.
This circumstance suggests that the approach may also be able to account for the temperature
evolution of the ‘minor’ dynamical features of the VACF. Further work in this direction is
in progress.
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